Olimpiada Națională
GAZETA MATEMATICĂ

Clasa a XI-a

Model subiect
Etapa I
Timp de lucru: 120 de minute.
Fiecare problemă se punctează cu 1 punct.

Alegeți varianta corectă de răspuns. \mathbf{O} singură variantă este corectă.

1. Fie matricele $A=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ și $B=\left(\begin{array}{ll}3 & -1 \\ 4 & -2\end{array}\right)$. Calculați ${ }^{t}(A B)-{ }^{t} B \cdot{ }^{t} A$.
A. $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$;
B. $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
C. $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
D. $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
2. Fie matricea $A=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$ și $n \in \mathbb{N}^{*}$. Atunci:
A. $A^{n}=\left(\begin{array}{cc}1 & 4 n \\ 0 & 1\end{array}\right)$
B. $A^{n}=\left(\begin{array}{ll}1 & 4^{n} \\ 0 & 1\end{array}\right)$
C. $A^{n}=\left(\begin{array}{cc}1 & 2^{n+1} \\ 0 & 1\end{array}\right)$
D. $A^{n}=\left(\begin{array}{cc}1 & n+4 \\ 0 & 1\end{array}\right)$
3. Soluția ecuației $2 X^{7}+X^{3}=\left(\begin{array}{cc}3 & 0 \\ 17 & 3\end{array}\right)$ este:
A. $X=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$
B. $X=\left(\begin{array}{cc}2 & 0 \\ -3 & 2\end{array}\right)$
C. $X=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$
D. $x=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
4. Numărul elementelor mulțimii $\left\{A \in \mathcal{M}_{2}(\mathbb{R}) \mid \operatorname{Tr}\left(A \cdot{ }^{t} A\right)=0\right\}$ este egal cu:
A. 1
B. 0
C. 2
D. o infinitate
5. Determinați numărul de soluții reale și distincte ale ecuației $\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & x & x^{2} \\ 4 & x^{2} & x^{4}\end{array}\right|=0$.
A. 1
B. 0
C. 5
D. 3
6. Se consideră determinatul $D=\left|\begin{array}{lll}a-1 & a+1 & a^{2}-1 \\ b-1 & b+1 & b^{2}-1 \\ c-1 & c+1 & c^{2}-1\end{array}\right|$, unde $a, b, c \in \mathbb{R}$. Atunci:
A. $D=a+b+c$
B. $D=1$
C. $D=(a+b+c)^{2}$
D. $D=-2(a-b)(b-c)(c-a)$
7. Determinați $m \in \mathbb{C}$ pentru care matricea $A=\left(\begin{array}{cc}2 m+1 & 1 \\ 3 & m-2\end{array}\right)$ nu este inversabilă.
A. $m \in\left\{-1, \frac{5}{2}\right\}$
B. $m \in \mathbb{C} \backslash \mathbb{R}$
C. $m \in\left\{-\frac{1}{2}, 2\right\}$
D. $m=0$
8. Numerele $a, b \in \mathbb{R}$ pentru care matricea $A=\left(\begin{array}{cccc}2 & 2 & b & 1 \\ 1 & a & 8 & 3 \\ 3 & 2 & 10 & 2\end{array}\right)$ are rangul minim sunt:
A. $a=-4, b=6$
B. $a=1, b=-6$
C. $a=2, b=3$
D. $a=-4, b=2$
9. $\lim _{n \rightarrow \infty} \frac{3 n(2 n+1)-(3 n+1)(4 n-5)}{2 n^{2}+3 n+1}$ este egală cu:
A. -3
B. 2
C. 1
D. 5
10. $\lim _{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^{2}+n+1}}\right)^{n-1}$ este egală cu:
A. $\frac{1}{\sqrt{e}}$
B. e^{2}
C. 1
D. ∞
11. $\lim _{n \rightarrow \infty}\left(\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n+1)(2 n+3)}\right)$ este egală cu:
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$
12. Valoarea limitei $\lim _{n \rightarrow \infty} \sqrt{n} \cdot(\sqrt{n+1}+\sqrt{4 n+3}-\sqrt{9 n+5})$ este:
A. $\frac{5}{12}$
B. $\frac{1}{3}$
C. $-\frac{1}{2}$
D. 0
13. Valoarea limitei $\lim _{n \rightarrow \infty}\left(\frac{1^{2} \cdot 2}{n^{4}+n}+\frac{2^{2} \cdot 3}{n^{4}+2 n}+\frac{3^{2} \cdot 4}{n^{4}+3 n} \ldots+\frac{n^{2}(n+1)}{n^{4}+n^{2}}\right)$ este:
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. ∞
D. 0
14. Valoarea limitei $\lim _{n \rightarrow \infty} \frac{(2 n+1)!\cdot(2 n-1)!}{(5 n+4)!} \cdot n^{2}$ este:
A. 0
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. ∞
15. Numerele reale a și b verifică relația $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+4 n+3}+a n+b\right)=1$. Atunci:
A. $a+b^{2}=0$
B. $a+b=2$
C. $a^{2}+b^{2}=4$
D. $a \cdot b=2$
16. Fie p un număr natural nenul. Valoarea limitei $\lim _{n \rightarrow \infty}\left(\frac{1^{p}+2^{\rho}+\ldots+n^{p}}{n^{\rho}}-\frac{n}{p+1}\right)$ este:
A. $\frac{1}{2}$
B. $\frac{p}{2}$
C. $-p$
D. $\frac{1}{C_{\rho}^{2}}$

Problemele 17-18 se referă la următorul enunț:
Se consideră șirul $\left(a_{n}\right)_{n \geq 1}$ definit prin $a_{1}>1$ și $a_{n+1}=a_{n}+\frac{n}{a_{n}}, n \geq 1$.
17. Stabiliți care dintre afirmațiile următoare este falsă:
A. $a_{n}<n, \forall n \geq 3$
B. $a_{n}>2 \sqrt{n}, \forall n \geq 2$;
C. $\left(a_{n}\right)_{n 21}$ este strict crescător;
D. $\left(a_{n}\right)_{n 21}$ este divergent;
18. Stabiliți care dintre afirmațiile următoare este adevărată:
A. $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=1$;
B. $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\frac{1}{2}$
C. $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=0$
D. $\left(\frac{a_{n}}{n}\right)_{n \geq 1}$ nu are limită

Problemele $\mathbf{1 9 - 2 0}$ se referă la următorul enunț:
Se consideră mulțimea $G=\left\{\left.M(a)=\left(\begin{array}{cc}-a+1 & 3 a \\ 3 a & -9 a+1\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$.
19. Dacă $a, b \in \mathbb{R}$, atunci $M(a) \cdot M(b)$ este:
A. $M(a+b-10 a b)$
B. $M(a+b-3 a b)$
C. $M(a+b)$
D. $M(a+b+3 a b)$
20. Se consideră mulțimea $X=\left\{U \in \mathcal{M}_{2}(\mathbb{R}) \mid A \cdot U=U\right.$, pentru orice $\left.A \in G\right\}$. Atunci:
A. $\operatorname{card} X=1$ și $X \subset G$;
B. $\operatorname{card} X=1$ și $X \not \subset G$;
C. $\operatorname{card} X \geq 2$;
D. $X=\varnothing$.

