

Olimpiada Națională GAZETA MATEMATICĂ

Clasa a XI-a

Model subject

Etapa I

Timp de lucru: 120 de minute. Fiecare problemă se punctează cu 1 punct.

Alegeți varianta corectă de răspuns. O singură variantă este corectă.

- **1.** Fie matricele $A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} 3 & -1 \\ 4 & -2 \end{pmatrix}$. Calculați ${}^{t}(AB) {}^{t}B \cdot {}^{t}A$.
 - A. $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; B. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ C. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ D. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

- **2.** Fie matricea $A = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$ și $n \in \mathbb{N}^*$. Atunci:

- **A.** $A^n = \begin{pmatrix} 1 & 4n \\ 0 & 1 \end{pmatrix}$ **B.** $A^n = \begin{pmatrix} 1 & 4^n \\ 0 & 1 \end{pmatrix}$ **C.** $A^n = \begin{pmatrix} 1 & 2^{n+1} \\ 0 & 1 \end{pmatrix}$ **D.** $A^n = \begin{pmatrix} 1 & n+4 \\ 0 & 1 \end{pmatrix}$
- 3. Soluția ecuației $2X^7 + X^3 = \begin{pmatrix} 3 & 0 \\ 17 & 3 \end{pmatrix}$ este:

 - **A.** $X = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ **B.** $X = \begin{pmatrix} 2 & 0 \\ -3 & 2 \end{pmatrix}$ **C.** $X = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ **D.** $X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
- **4.** Numărul elementelor mulțimii $\{A \in \mathcal{M}_2(\mathbb{R}) | \text{Tr}(A \cdot {}^t A) = 0 \}$ este egal cu:
 - **A.** 1
- **B.** 0
- **C.** 2
- D. o infinitate
- 5. Determinați numărul de soluții reale și distincte ale ecuației $\begin{vmatrix} 1 & 1 & 1 \\ 2 & x & x^2 \\ 4 & x^2 & x^4 \end{vmatrix} = 0$.
 - **A.** 1
- **B.** 0
- **C.** 5
- **D.** 3
- $|a-1 \ a+1 \ a^2-1|$ **6.** Se consideră determinatul $D = \begin{vmatrix} b-1 & b+1 & b^2-1 \end{vmatrix}$, unde $a,b,c \in \mathbb{R}$. Atunci: $\begin{vmatrix} c - 1 & c + 1 & c^2 - 1 \end{vmatrix}$
 - **A.** D = a + b + c **B.** D = 1
- **C.** $D = (a+b+c)^2$ **D.** D = -2(a-b)(b-c)(c-a)
- **7.** Determinați $m \in \mathbb{C}$ pentru care matricea $A = \begin{pmatrix} 2m+1 & 1 \\ 3 & m-2 \end{pmatrix}$ nu este inversabilă.
 - **A.** $m \in \left\{-1, \frac{5}{2}\right\}$ **B.** $m \in \mathbb{C} \setminus \mathbb{R}$ **C.** $m \in \left\{-\frac{1}{2}, 2\right\}$ **D.** m = 0

- **8.** Numerele $a,b \in \mathbb{R}$ pentru care matricea $A = \begin{pmatrix} 2 & 2 & b & 1 \\ 1 & a & 8 & 3 \\ 3 & 2 & 10 & 2 \end{pmatrix}$ are rangul minim sunt:

A.
$$a = -4$$
, $b = 6$

A.
$$\alpha = -4, b = 6$$
 B. $\alpha = 1, b = -6$ **C.** $\alpha = 2, b = 3$ **D.** $\alpha = -4, b = 2$

C.
$$a = 2, b = 3$$

D.
$$a = -4, b = 2$$

9.
$$\lim_{n\to\infty} \frac{3n(2n+1)-(3n+1)(4n-5)}{2n^2+3n+1}$$
 este egală cu:

10.
$$\lim_{n\to\infty} \left(\frac{n}{\sqrt{n^2+n+1}}\right)^{n-1}$$
 este egală cu:

A.
$$\frac{1}{\sqrt{e}}$$

11.
$$\lim_{n\to\infty} \left(\frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n+1)(2n+3)} \right)$$
 este egală cu:

A.
$$\frac{1}{6}$$

B.
$$\frac{1}{3}$$

c.
$$\frac{1}{2}$$

D.
$$\frac{1}{4}$$

12. Valoarea limitei
$$\lim_{n\to\infty} \sqrt{n} \cdot \left(\sqrt{n+1} + \sqrt{4n+3} - \sqrt{9n+5}\right)$$
 este:

A.
$$\frac{5}{12}$$

B.
$$\frac{1}{3}$$

c.
$$-\frac{1}{2}$$

13. Valoarea limitei
$$\lim_{n\to\infty} \left(\frac{1^2 \cdot 2}{n^4 + n} + \frac{2^2 \cdot 3}{n^4 + 2n} + \frac{3^2 \cdot 4}{n^4 + 3n} \dots + \frac{n^2(n+1)}{n^4 + n^2} \right)$$
 este:

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{3}$$

14. Valoarea limitei
$$\lim_{n\to\infty} \frac{(2n+1)! \cdot (2n-1)!}{(5n+4)!} \cdot n^2$$
 este:

B.
$$\frac{1}{3}$$

c.
$$\frac{1}{2}$$

15. Numerele reale
$$a$$
 și b verifică relația $\lim_{n\to\infty} \left(\sqrt{n^2+4n+3}+an+b\right)=1$. Atunci:

A.
$$a + b^2 = 0$$
 B. $a + b = 2$

B.
$$a + b = 2$$

C.
$$a^2 + b^2 = 4$$

D.
$$a \cdot b = 2$$

16. Fie
$$p$$
 un număr natural nenul. Valoarea limitei $\lim_{n\to\infty} \left(\frac{1^p+2^p+...+n^p}{n^p}-\frac{n}{p+1}\right)$ este:

A.
$$\frac{1}{2}$$

B.
$$\frac{p}{2}$$

D.
$$\frac{1}{C^2}$$

Problemele **17-18** se referă la următorul enunț:

Se consideră șirul
$$(a_n)_{n\geq 1}$$
 definit prin $a_1 > 1$ și $a_{n+1} = a_n + \frac{n}{a_n}$, $n \geq 1$.

17. Stabiliți care dintre afirmațiile următoare este falsă:

A.
$$a_n < n$$
, $\forall n \ge 3$

B.
$$a_n > 2\sqrt{n}$$
, $\forall n \ge 2$;

C.
$$(a_n)_{n\geq 1}$$
 este strict crescător;

D.
$$(a_n)_{n\geq 1}$$
 este divergent;

18. Stabiliți care dintre afirmațiile următoare este adevărată:

A.
$$\lim_{n\to\infty}\frac{a_n}{n}=1$$

B.
$$\lim_{n \to \infty} \frac{a_n}{n} = \frac{1}{2}$$

$$\mathbf{C.} \lim_{n\to\infty}\frac{a_n}{n}=0$$

A.
$$\lim_{n\to\infty}\frac{\alpha_n}{n}=1$$
;
B. $\lim_{n\to\infty}\frac{\alpha_n}{n}=\frac{1}{2}$
C. $\lim_{n\to\infty}\frac{\alpha_n}{n}=0$
D. $\left(\frac{\alpha_n}{n}\right)_{n\geq 1}$ nu are limită

Problemele **19-20** se referă la următorul enunț:

Se consideră mulțimea
$$G = \left\{ M(a) = \begin{pmatrix} -a+1 & 3a \\ 3a & -9a+1 \end{pmatrix} \middle| a \in \mathbb{R} \right\}.$$

19. Dacă $a,b \in \mathbb{R}$, atunci $M(a) \cdot M(b)$ este:

A.
$$M(a+b-10ab)$$

B.
$$M(a+b-3ab)$$
 C. $M(a+b)$ **D.** $M(a+b+3ab)$

C.
$$M(a+b)$$

D.
$$M(a+b+3ab)$$

20. Se consideră mulțimea $X = \{U \in \mathcal{M}_2(\mathbb{R}) \mid A \cdot U = U, \text{ pentru orice } A \in G\}$. Atunci:

A. card
$$X = 1$$
 și $X \subset G$; **B.** card $X = 1$ și $X \not\subset G$; **C.** card $X \ge 2$; **D.** $X = \emptyset$.

B. card
$$X = 1$$
 și $X \not\subset G$;

C. card
$$X \ge 2$$
;

$$\mathbf{D}, X = \emptyset$$